首页> 外文OA文献 >Friction and dynamically dissipated energy dependence on temperature in polycrystalline silicon MEMS devices
【2h】

Friction and dynamically dissipated energy dependence on temperature in polycrystalline silicon MEMS devices

机译:多晶硅MEMS器件中的摩擦和动态耗散能量对温度的依赖性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we report on the influence of capillary condensation on the sliding friction of sidewall surfaces in polycrystalline silicon micro-electromechanicalsystems (MEMS). We developed a polycrystalline silicon MEMS tribometer, which is a microscale test device with two components subject to sliding contact. One of the components can be heated in situ by Joule heating to set the temperature of the contact and thereby control the capillary kinetics at the MEMS sidewalls. We used an optical displacement measurement technique to record the stick–slipmotion of the slider with sub-nanometer resolution, and we assessed the friction force with nanonewton resolution. All friction measurements were performed under controlled ambient conditions while sweeping the contact temperaturefrom room temperature to 300 C, and from 300 C to room temperature. We were able to distinguish the two ways in which energy is dissipated during sliding: the‘semi-statically’ dissipated energy attributed to asperity deformation and contact yield, and the dynamically dissipated energy ascribed to the release of the tension in the slider during slip events. We observed an increase in thedynamically dissipated energy at 80 C while sweeping down in temperature. This increase is caused by higher adhesion due to capillary condensation between the conformal surfaces. Our study highlights how energy is dissipated during the sliding contact of MEMS sidewalls, and it is helpful in overcoming friction in multi-asperity systems.
机译:在本文中,我们报道了毛细管冷凝对多晶硅微机电系统(MEMS)中侧壁表面滑动摩擦的影响。我们开发了多晶硅MEMS摩擦计,这是一种微型测试设备,其中两个组件都需要滑动接触。组件之一可以通过焦耳加热原位加热,以设置接触点的温度,从而控制MEMS侧壁处的毛细管动力学。我们使用光学位移测量技术以亚纳米分辨率记录滑块的粘滑运动,并以纳牛顿分辨率评估摩擦力。所有摩擦测量均在受控的环境条件下进行,同时将接触温度从室温扫描到300 C,从300 C扫描到室温。我们能够区分出在滑动过程中消散能量的两种方式:“半静态”消散归因于粗糙变形和接触屈服,而动态消散的能量归因于滑动过程中滑块张力的释放。我们观察到在80 C时动态耗散的能量随着温度的下降而增加。这种增加是由于共形表面之间的毛细管凝结而导致的更高粘附力引起的。我们的研究强调了在MEMS侧壁的滑动接触过程中能量如何消散,这有助于克服多粗糙系统中的摩擦。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号